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Abstract
The Casimir effect in the planar setting is described using the boundary state
formalism, for general partially reflecting boundaries. It is expressed in terms of
the low-energy degrees of freedom, which provides a large distance expansion
valid for general interacting field theories provided there is a non-vanishing
mass gap. The expansion is written in terms of the scattering amplitudes,
and needs no ultraviolet renormalization. We also discuss the case when the
quantum field has a nontrivial vacuum configuration.

PACS numbers: 11.90.+t, 11.10.Kk, 11.55.Bq

1. Introduction

The Casimir effect can be considered as a response of the ground state in a quantum field
theory to the presence of boundary conditions. Therefore it is natural to seek a relation to the
approach known as boundary quantum field theory started in two-dimensional spacetime by the
seminal paper of Ghoshal and Zamolodchikov [1]. Recently we have developed and extended
this formalism to quantum field theories in arbitrary spacetime dimensions and applied it to
the Casimir effect [2–5]. Here we give a short review of our results.

2. Boundary state formalism

2.1. The concept of the boundary state

Following [5] we consider an Euclidean quantum field theory of a scalar field � defined in
a (D + 1)-dimensional half spacetime, parameterized as (x � 0, y, �r), in the presence of a
codimension one flat boundary located at x = 0. The correlation functions defined as

〈�(x1, y1, �r1) · · · �(xN, yN, �rN)〉 =
∫
D� �(x1, y1, �r1) · · · �(xN, yN, �rN) e−S[�]∫

D� e−S[�]
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contain all information about the theory. The measure in the functional integral is provided
by the classical action

S[�] =
∫

d�r
∫ ∞

−∞
dy

[∫ 0

−∞
dx

(
1

2
( �∇�)2 + U(�)

)
+ UB(�(x = 0, y, �r))

]
,

which determines also the boundary condition via the boundary potential UB ,

∂x�|x=0 = −δUB(�)

δ�

∣∣∣∣
x=0

.

Here we assume for simplicity that the boundary term does not depend on the temporal (i.e. y)
derivative of �, which means that there are no boundary degrees of freedom with a temporal
dynamics independent of the bulk (it may depend on derivatives with respect to �r , which
is the reason for the variational derivative δ). The bulk interaction U is constrained by the
requirement that the bulk spectrum must possess a mass gap m.

This Euclidean quantum field theory can be considered as the imaginary time version of
two different Minkowskian quantum field theories. We can consider t = −iy as Minkowskian
time and so the boundary is located in space providing a nontrivial boundary condition for
the field �. The space of states in this Hamiltonian description is the boundary Hilbert space
HB determined by the configurations on the equal time slices. HB contains multi-particle
states and is built over the vacuum state, obtained in the presence of the boundary condition
(|0〉B), by the successive application of particle creation operators3. In the asymptotic past the
particles do not interact and behave as free particles travelling towards the boundary; thus

HB = {
a+

in(k1, �k1) · · · a+
in(kN, �kN)|0〉B, k1 � · · · � kN > 0

}
,

where the operator a+
in(k, �k) creates an asymptotic particle of mass m with transverse (i.e.

x-directional) momentum k and parallel (i.e. parallel to the boundary) momentum �k. The
corresponding energy is ω(k, �k) =

√
k2 + �k2 + m2 =

√
k2 + meff(�k)2 where meff(�k) =√�k2 + m2 is the effective mass of a particle with parallel momentum �k as seen in the two-

dimensional spacetime formed by t and x. Instead of k, we shall also frequently use the rapidity
parameter ϑ defined by

ω = meff(�k) cosh ϑ, k = meff(�k) sinh ϑ. (2.1)

In the Heisenberg picture the time evolution of the field

�(x, t, �r) = eiHBt �(x, 0, �r) e−iHBt

is generated by the following boundary Hamiltonian:

HB =
∫

d�r
[∫ 0

−∞
dx

(
1

2
�2

t +
1

2
(∂x�)2 +

1

2
(�∂�)2 + U(�)

)
+ UB(�(x = 0))

]
. (2.2)

The correlator can then be understood as the matrix element

〈�(x1, y1, �r1) · · · �(xN, yN, �rN)〉 =B 〈0|Tt (�(x1, t1, �r1) · · · �(xN, tN , �rN)) |0〉B,

where Tt denotes time ordering with respect to time t, and the vacuum |0〉B is normalized to 1.
The formulation of asymptotic states and fields, together with the relevant reduction

formulae (which generalize the LSZ approach to boundary QFT) was given in [2, 3]. In [3] we
also gave the appropriate generalization of Landau equations, Coleman–Norton interpretation
and Cutkosky rules, together with an example of one-loop renormalization of boundary
interaction (where we considered the case of sine-Gordon model in two spacetime dimensions).

3 One can also introduce particle-like excitations confined to the boundary [3] (‘surface plasmons’), but for simplicity
we do not consider them here.
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Figure 1. The two Hamiltonian descriptions, with a representation of the amplitudes R and K2.

Elastic reflection of a particle from the boundary (see figure 1) is a process with one particle
of energy ω and parallel momentum �k both in the incoming and outgoing state4, whose
transverse momentum k changes sign. Its amplitude is the reflection factor R(ω, �k) which
can only depend on |�k|, as a result of rotational invariance in the directions parallel to the
boundary; it is not necessarily unitary due to the possible existence of inelastic processes.

Alternatively we can also consider τ = −ix as Minkowskian time, as depicted in figure 1.
In this case, the boundary is located in time and we can use the usual infinite volume
Hamiltonian description. The Hilbert space is the bulk Hilbert space H spanned by multi-
particle in states

H = {
A+

in(κ1, �k1) · · · A+
in(κN, �kN)|0〉, k1 � · · · � kN

}
,

where κ is the momentum in the y direction, and the energy corresponding to the time direction

is given by ω(κ, �k) =
√

m2 + κ2 + �k2. One can again use a rapidity parametrization in this
channel defined by

κ = meff(�k) sinh ϑ, ω = meff(�k) cosh ϑ (2.3)

Time evolution

�(τ, y, �r) = eiHτ �(0, y, �r) e−iHτ

is generated by the bulk Hamiltonian

H =
∫

d�r
∫ ∞

−∞
dy

(
1

2
�2

τ +
1

2
(∂y�)2 +

1

2
(�∂�)2 + U(�)

)
(2.4)

and the boundary appears in time as a final state in calculating the correlator,

〈�(x1, y1, �r1) · · · �(xN, yN, �rN)〉 = 〈B|Tτ (�(τ1, y1, �r1) · · · �(τN, yN, �rN)) |0〉.
The state 〈B| is called the boundary state, which is an element of the bulk Hilbert space and
is defined by the equality of the two alternative Hamiltonian descriptions

〈B|Tτ (�(τ1, y1, �r1) · · · �(τN, yN, �rN)) |0〉 =B 〈0|Tt (�(x1, t1, �r1) · · · �(xN, tN , �rN)) |0〉B,

where the correspondence is valid if (iτ, y) is identified with (x, it). Using asymptotic
completeness the boundary state can be expanded in the basis of asymptotic in states as5

〈B| = 〈0|
{

1 + K̄1Ain(0, 0)

+
∫ ∞

0

dκ

2π

∫
dD−1�k

(2π)D−1ω(κ, �k)
K̄2(κ, �k)Ain(−κ,−�k)Ain(κ, �k) + · · ·

}
, (2.5)

4 Energy and parallel momentum are conserved due to the unbroken translation invariance in the directions parallel
to the boundary.
5 The bars on top of the K coefficients indicate that the above expansion is that of the conjugate (‘bra’) boundary
state.
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which we refer to as the cluster expansion for the boundary state (where due to translational
invariance only bulk multi-particle states with zero total momentum can appear).

2.2. Relation between the two channels: K1 and K2 in terms of R

The one-point function of the field, due to unbroken Poincaré symmetry along the boundary,
only has a nontrivial dependence on x,

B〈0|�(x, t, �r)|0〉B = G1
bdry(x),

which corresponds to a nontrivial vacuum configuration in the presence of the boundary
condition. The leading asymptotic behaviour for x → −∞ is given by [5]

B〈0|�(x, t, �r)|0〉B = 〈0|�(0)|0〉 + ḡ emx, (2.6)

where 〈0|�(0)|0〉 is the vacuum expectation value in the bulk and ḡ is a parameter which is
characteristic of the boundary condition (and also of the field �). We recall that |0〉B is the
ground state of the boundary system which means that there are no bulk excitations present
and the boundary itself is in its ground state. The absence of bulk excitations is important
for the above asymptotics to be valid; however, (2.6) also holds when the boundary is excited
(‘surface plasmons’).

Using the property of the interpolating field �

〈0|�(0)|A(k = 0)〉 =
√

Z

2
,

where Z is the bulk wavefunction renormalization constant (0 � Z < 1), and from the cluster
expansion (2.5) one obtains the relation6

ḡ =
√

Z

2
K̄1.

On the other hand, the existence of nontrivial vacuum expectation value for the field is generally
related to a singularity of the reflection factor at the particular kinematical point �k = 0, ω = 0
(i.e. k = im or equivalently ϑ = iπ/2). In our paper [5] it was shown that this singularity
takes the following form:

R(ω, �k) ∼ −mg2/2

ω
(2π)Dδ(�k), (2.7)

with g parametrizing its strength. Using the cluster property of local quantum field theory we
proved the following relation:

ḡ = g

2

√
Z

2

valid for general quantum field theories, which yields the expression of K̄1 in terms of g,

K̄1 = g

2
.

This extends a relation previously conjectured in the case of two-dimensional integrable field
theories [6, 7]. In the two-dimensional case, there is no parallel momentum �k and the rapidity
parametrization (2.1) takes the form

ω = m cosh ϑ, κ = m sinh ϑ. (2.8)

6 Note that this relation remains valid if the Lagrangian field � is replaced by any bulk interpolating field for the
asymptotic particles and its appropriate wavefunction renormalization Z; in that case ḡ also needs to be replaced by
another constant which corresponds to the field considered.
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Figure 2. The folding trick, illustrated for a generic defect scattering process.

As a result, the singularity (2.7) corresponds to a pole [1]

R(ϑ) = ig2/2

ϑ − iπ/2
.

Let us now turn to K̄2. Using the reduction formulae derived in [5] the relation to R can be
obtained as follows:

K̄2(κ, �k) = R(ω → −iκ, �k).

This can be written using the rapidity parametrizations (2.1,2.3) as7

K̄2(ϑ, �k) = R

(
i
π

2
+ ϑ, �k

)
and this relation fits very well with the pictorial representation in figure 1. In two spacetime
dimensions this is the same as the relation obtained by Ghoshal and Zamolodchikov8 in [1].
We remark that when the theory in the bulk is free and the reflection is elastic, the boundary
state can be written in a closed form9

〈B| = 〈0| exp

{
K̄1Ain(0, 0) +

∫ ∞

0

dκ

2π

∫
dD−1�k

(2π)D−1ω(κ, �k)
K̄2(κ, �k)Ain(−κ,−�k)Ain(κ, �k)

}
.

(2.9)

3. Defects and defect operators

Boundary conditions considered in the context of the Casimir effect generally allow
transmission as well, and such boundaries are called ‘defects’. A suitable generalization
of the boundary state formalism can be obtained by a folding trick depicted in figure 2, which
maps the defect into a boundary system [8]. Suppose now that a defect is located at x0. In the
crossed channel (where time flows in the x direction) it can be represented by a defect operator
which acts from the bulk Hilbert space of the x < x0 system into that of the x > x0 system10.

7 Note that the rapidity arguments on the two sides of the equality are conceptually different, since they correspond
to the kinematical variables of two different channels as defined in (2.1) and (2.3). We can consider them related by
analytic continuation.
8 They also noted that the relation between the two channels can be considered as a generalization of the well-known
crossing symmetry to quantum field theories with boundary.
9 In 1+1 dimensions this can be extended to any integrable QFT with integrable boundary condition [1].
10 On the two sides of the defect, the bulk theories may differ; in general, a defect can be an interface between very
different quantum field theories (as an example one can consider the electromagnetic field in the presence of an
interface between two drastically different physical media).
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R : T : T :R :
− + + −

Figure 3. One-particle defect amplitudes.

Let us denote the operator creating the particle for the x < x0 domain as A
†
1 while for the

x > x0 domain as A
†
2. There are now four one-particle reflection amplitudes, shown in figure 3.

Two of them are denoted by R± and preserve the species numbers 1, 2, corresponding in the
defect picture to reflections on the left and the right side, respectively. The other two, T ± are
the ones changing 1 into 2 and 2 into 1, and in the defect picture they describe transmission
from left to right and right to left, respectively. These can be conveniently put together into a
defect matrix11

D(ϑ, �k) =
(

R+(ϑ, �k) T −(ϑ, �k)

T +(ϑ, �k) R−(ϑ, �k)

)
.

Using the folding map to the boundary system we obtain the defect operator [8] as12

D = 1 +
∫ ∞

∞

dϑ

4π

∫
dD−1�k

(2π)D−1

(
R+

( iπ

2
− ϑ, �k

)
A

†
1(−ϑ,−�k)A

†
1(ϑ, �k)

+ T +
( iπ

2
− ϑ, �k

)
A

†
1(−ϑ,−�k)A2(−ϑ,−�k) + T −

( iπ

2
− ϑ, �k

)
A1(ϑ, �k)A

†
2(ϑ, �k)

+ R−
( iπ

2
− ϑ, �k

)
A2(ϑ, �k)A2(−ϑ,−�k)

)
+ terms with more than two particles. (3.1)

With the same conditions as for the boundary state (trivial bulk scattering, and elasticity for the
combined one-particle reflection/transmission amplitude) the defect operator can be summed
up into an exponential form similar to (2.9), as discussed in [4].

4. Derivation of Casimir energy

We now turn to the derivation of Casimir energy of a (D+1)-dimensional scalar field �(t, x, �y)

in a domain of width L in x (for details see [4, 5]). Consider two defects located at a distance
L with defect matrices D1 and D2. The ground-state eigenvalue of the Hamiltonian HB in
(2.2) can be evaluated via the partition function. Compactifying all infinite (temporal and
spatial) dimensions (i.e. the D extensions perpendicular to x) to circles with perimeter T we
can evaluate the partition function in two different ways [4]:

Z(L, T ) = TrHB
e−T HB = 〈0| D1 e−LH D2 |0〉 ,

where H is the bulk Hamiltonian (2.4) in the x channel in the domain between the two defects
and |0〉 is the corresponding bulk vacuum state. Inserting a complete set of bulk asymptotic
states we obtain

Z(L, T ) = e−LE0
∑

n

〈0| D1 |n〉 〈n| D2|0〉 e−L(En−E0).

Normalizing the bulk ground-state energy E0 to 0, the first few terms can be written explicitly
as

1 +
∑
ϑ,�k

∑
ϑ ′,�k

〈0|D1|ϑ, �k;ϑ ′, �q〉〈ϑ, �k;ϑ ′, �q|D2|0〉 e−L(meff(�k) cosh ϑ+meff(�q) cosh ϑ ′) + O(e−3mL)

11 D is not necessarily unitary, since we allow for inelastic scattering processes creating and annihilating particles.
12 For the sake of simplicity here we omitted possible one-particle terms corresponding to nontrivial vacuum
configurations, but their inclusion using the folding trick is straightforward.
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The term 1 is the contribution from the vacuum (|n〉 = |0〉), the next term comes from two-
particle terms in (3.1) and the higher-order corrections come from the higher multi-particle
terms. This is a sort of cluster expansion similar to that used in [7], valid for large values
of the volume L. Finite volume restricts the momenta to κ = 2π

T
n and ki = 2π

T
ni , and the

normalization of the creation operators becomes

[Ain(κ, �k), A+
in(κ

′
, �k′

)] = T Dω(κ, �k)δκ,κ
′ δ�k,�k′ .

The ground-state (Casimir) energy (per unit transverse area) can be extracted from the partition
function as

E(L) = − lim
T →∞

1

T D
log Z(L, T ).

The result is

E(L) = −
∫ ∞

−∞

dϑ

4π
cosh ϑ

∫
dD−1�k

(2π)D−1
meff(�k)

×R−
1

(
iπ

2
+ ϑ, �k

)
R+

2

(
iπ

2
− ϑ, �k

)
e−2meff(�k)L cosh ϑ + · · · . (4.1)

The correction terms correspond to higher particle terms in the expansion (3.1) of the defect
operator D and include the amplitudes of reflection/transmission processes involving more
than one particle in at least one of the asymptotic states. These can be computed (together
with the reflection factors R±), e.g. using a BQFT formulation as that presented in [3], but it
is obvious that they are suppressed by a factor e−mL with respect to the leading order term due
to the presence of at least one additional particle in the corresponding term of the expansion
of the defect operator D. Note that (4.1) is applicable in the presence of nontrivial bulk and
boundary interactions: their effects at leading order are contained in the reflection factors
R±, so as long as there is some theoretical or experimental input from which these can be
determined the leading order contribution can be evaluated.

In the elastic case the expansion can be summed up [4]13,

E(L) =
∫ ∞

−∞

dϑ

4π
cosh ϑ

∫
dD−1�k

(2π)D−1
meff(�k)

× log

(
1 − R−

1

(
iπ

2
+ ϑ, �k

)
R+

2

(
iπ

2
− ϑ, �k

)
e−2meff(�k)L cosh ϑ

)
. (4.2)

Let us now calculate the ground-state energy in the presence of nontrivial vacuum configuration
of the field. For simplicity we suppose that the boundary is totally reflective. Compactifying
the other directions again to circles of perimeter T with periodic boundary conditions we
obtain

Z(L, T ) = 〈Bα|e−LH |Bβ〉 =
∑

n

〈Bα|n〉〈n|Bβ〉
〈n|n〉 e−EnL.

The leading finite-size correction to the ground-state energy for large L is now given by one-
particle terms, and the ground-state energy per transverse area (at leading order in L) has the
form [5]

E
αβ

0 (L) = −mK̄1
αK1

β e−mL + · · · . (4.3)

For partially reflecting boundaries (i.e. defects) the appropriate K1 coefficient is the one-
particle coupling of the defects evaluated in the domain between them. If one of the K1’s is
zero then the leading correction comes from two-particle states, and is identical to (4.1).

13 We remark that the usual zero mode summation method leads to the same result, as indicated in appendix A of [4].
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5. Summary and discussion

A very appealing property of the boundary state approach is the universality of the formulae
(4.1) and (4.2). In [4] we showed that the latter indeed reproduces all the results previously
known for the planar situation, including the famous Lifshitz formula [10] (it also provides a
way to compute new cases easily, as we demonstrated for a massive scalar field with Robin
boundary condition).

Another important point is that this approach formulates the Casimir effect from an
infrared viewpoint. Standard derivations of the Casimir effect solve the microscopic field
theory. This necessitates tackling diverse issues such as renormalization, and also the
possibility that the infrared (long-distance behaviour) may be quite different from the
microscopic description of the theory (as is the case for example in QCD). Formula (4.1)
expresses the effect in terms of the asymptotic particles14, and provides a long-distance
expansion for Casimir energy.

Our results are consistent with the philosophy behind the more recent approach by Emig
et al [11], the origins of which can be found in the earlier papers [12–14]. From this viewpoint
the Casimir effect is an interaction of fluctuating surface charge densities, and therefore it does
not logically imply the existence of (astronomically large) zero-point energies because the
bulk energy density can be trivially discarded. In the boundary state approach the surface is
characterized by the coefficients in the cluster expansion of the boundary state (2.5) (or, more
generally, the defect operator (3.1)). Both approaches give manifestly finite results, with no
ultraviolet divergences whatsoever. There are some differences however. While the boundary
state approach only works easily for the planar case, their methods can be used for general
geometries. On the other hand, the approach of [11] is only formulated for free field theories
with linear boundary conditions since it relies heavily on the computation of Gaussian path
integrals, while in the boundary state approach the expansion can be written for interacting
field theories with nonlinear boundary conditions, in terms of their long-distance scattering
data. The fact that the path integral is Gaussian also gives Emig et al the ability to tackle
theories with zero mass gap, which is only possible in the boundary state approach whenever
the expansion can be resummed into the form (4.2). The boundary state approach, on the other
hand, provides access to highly nontrivially interacting theories with a mass gap (a prominent
example of which is QCD), provided the relevant scattering data are determined, e.g. from
lattice field theory (we remark that it is also highly successful in two-dimensional integrable
field theories where exact scattering amplitudes are known).

It is important to note that the restriction of the boundary state approach to the planar
case comes from the fact that the high symmetry of the planar situation is exploited to relate
the boundary states (or defect operators) to the scattering data, therefore it is not a restriction
inherent in any theoretical principle. Finally, we remark that the results (4.1, 4.2) automatically
include the contribution of states localized to the defects (‘surface plasmons’) as discussed
in [4].

Note added in proof. After this contribution was accepted we learned of the related results in [15], which are obtained
in the case of conformal field theories, whereas our work is concerned with the massive case.
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